
Internationa[ Journal of Theoretieal Physics, Vol. 3, No. 4 (1970), pp. 299-305 

�9 1 The Classical Spln-~ Tachyon Field 

E G O N  M A R X  

Drexel University 
Philadelphia, Pennsylvania 

Received: 28 January 1970 

Abstract 

We present the classical theory of a set of two spinor fields patterned closely after the 
Dirac theory in two-component form, but each field obeys a modified Klein-Gordon 
equation, in which the sign of m 2 has been changed. The solution contains parts with 
real and imaginary frequencies, that contribute differently to conserved quantities such 
as the charge and the energy-momentum vector. We also show how the minimal inter- 
action with the electromagnetic field is obtained. 

1. Introduction 

Recently, there has been a renewed interest (Arons & Sudarshan, 1968; 
Bilaniuk et al., 1962; Dhar & Sudarshan, 1968; Feinberg, 1967)in the pos- 
sible existence of particles that move with speed greater than the speed of 
light, the so-called tachyons, within the context of  classical and quantum 
relativistic theories. Their energy-momentum vector is spacelike, that is, t 

pZ = _m 2 (1.1) 

where m is a real constant. The relativistic quantum mechanics of a spinless 
tachyon could be based on the modified Klein-Gordon equation, 

(0 a - m a) q~(x)  = 0 ( 1 . 2 )  

In this paper we present the analogous modification of the Dirac equation 
for a spin-�89 taehyon. We obtain a conserved current density vector with 
a charge density that is not positive definite. We write down the general 
solution of the free-field equations in terms of the usual momentum-space 
expansion, and obtain the corresponding expressions for the charge and 
the energy-momentum vector. We find contributions both from real and 
imaginary frequencies k0, with a peculiar dependence on the helicity of  the 
former, and in the form of interference terms for the latter. 

t We use the time-favoring metric (timelike vectors have positive norm) and the 
modified summation convention for repeated Greek lower indices that range from 0 
to 3. Latin capitals are used for spinor indices. Other conventions are those used in 
Marx (1969, 1970). 
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In Section 2 we recast some of the usual results of the Dirac theory in 
terms of two-component spinors, which we find more appropriate for our 
purpose. The following section deals with the properties of the basic causal 
Green function for equation (1.2); we note that the imaginary-frequency 
components which have to be specified at the initial (final) time decay 
exponentially with increasing (decreasing) time. In Section 4 we present the 
theory of a spin-�89 tachyon field in terms of two two-component spinors; 
we give the equations of motion with a minimal interaction with the 
electromagnetic field, and solve the free-field equations. We conclude with 
some remarks, in particular about the Lorentz covariance of the theory. 

2. The DiracField 

The usual theory of the spin-�89 field is based on the Lagrangian density 

~('D = -~i(:~:~, q~,, - : ,~ ~,, ~b) - rn:~b (2.1) 

which we can express in terms of two-component spinors (Marx, 1970) as 
~ 0  D -  1 '  * AB * AB _ A  (7 ~ * B  

- ~ l ( X a %  X~.~-XA,~,% X R - w  ~AB~,~ (2.2) 
A *B + cp,, %AB 9 ) + m(9 a X] + ~ D*A XA) 

The general solution of the Dirac equation for the free field, 

(-@. O + m) ~b(x) = 0 (2.3) 
is 

~b(x) = (270 -3/2 f d3p (re~E) 1/2 
(2.4) 

x ~. {ba(p) ua(p) exp (-ip.  x) + da*(p) va(p) exp (ip. x)}, 
a 

where the index ~ ranges over the helicity states and takes the values +1 
and - I ,  u~ and v a are the usual momentum-space bispinors, and 

E =P0 = +(p2 + m2)1/2 (2.5) 

With our present choice (Marx, 1970) of the matrices ~:~, the corresponding 
solution for Xa(X) is 

Xa(X) = (2'r) -3/2 f d3p (2E) -1/2 ~ {(E + Alpl) l/z hA(p) Xaa(P) • 
a (2.6) 

x exp (-ip.  x) - (E - Alp[)'/2 da*(p) Xaa(--/~) exp (ip. x)} 

Noether's theorem allows us to find the conserved densities from either 
of the forms of s For instance, the current density is 

.~ ~ y . ~ =  * An " (2.7) = XA ~ XB + cP A crt~AB ~ ~ 

which gives the positive definite conserved charge 

Q = f d3x@~ b = f d3x(x'~X + 9tq)) (2.Sa) 

Q = f d3p a • ([bal2 + IdalZ) (2.8b) 



THE CLASSICAL SPIN-�89 TACHYON FIELD 301 

The causal Green function for the Dirac field is 

Sv(x) = (iy. 0 + m) Ar(x) ~ (2.9) 
where 

z]F(x ) = (2rr) -4 f d4k exp ( - i k .  x) (k 2 - m 2 + ie) -j (2.10) 

we pointed out in an earlier paper (Marx, 1969) that its use requires the 
specification of the positive-frequency amplitudes ba at the initial time, and 
the negative-frequency amplitudes da at thefinal time. 

3. The Causal Green Function for Tachyons 

The basic Green functions for tachyons obey the modifiedinhomogeneous 
Klein-Gordon equation 

(a z - m 2) A,r(x)  = -~(x) (3.1) 

The causal Green function can be obtained (Dhar & Sudarshan, 1968) 
from equation (2.10) by changing the sign of m 2, 

AFT (x ) = (2~) -4 f d4k exp ( - i k .  x ) ( k  2 + m 2 + ie) -~ (3.2) 

As usual, we can do the k0-integration by residues, and we obtain 

( --~i(21r) -3 f d 3 k k o ' e x p ( - i k . x ) ,  t > 0  
(3.3) 

Art (x )  = [--�89 -3 d3k ko I exp (ik. x), t < 0 

where 
/+(k 2 - m2) 1/2, ]k] > m (3.4) 

k~ = [ - i (m 2 - -  k2) 1/2, ]k I < m 

The position of the two poles in the complex k0-plane is determined by 
the ir in the denominator; as ]k[ varies from o0 to m to zero, one pole 
moves above the negative real axis to the vicinity of the origin and up on 
the left side of the imaginary axis, white the other pole remains symmetric 
to this one through the origin. This way, the poles do not cross the path 
of integration. The contributions from imaginary frequency terms decrease 
exponentially for increasing It[ both for positive and negative time, that 
is, away from the disturbance at t = 0. If we remember that positive- 
frequency terms propagate forward in time, and negative-frequency terms 
backward, this behavior appears reminiscent of the cutoff that occurs below 
certain frequencies in electromagnetic wave guides. 

If we want to obtain the advanced and retarded Green functions, we 
presumably have to deform the path of integration when the poles are on 
the imaginary axis, for lkl < m. 
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4. The Spin-�89 Tachyon Field 

We obtain a Lagrangian density for a tachyon field f rom equation (2.2) 
by a simple change of  signs, and we base our  theory on the real Lorentz  
scalar 

�9 * AB * AR A * B  
= �89 % XB,, -- Xa,~ % XB + ~ %aB~,~ 

_ a., %aB ~*~ + m(~'iX~ + ~ ~ XA) (4.1) 

The equations o f  mot ion  are 

--i%aB~oa,~, + mXB = 0 (4.2) 

icr~ B XB,U + m~ ~ = 0 (4.3) 

and substitution o f  9~ a f rom equation (4.3) into equation (4.2) gives 

(02 - m 2) Xn(X) = 0 (4.4) 

indicating that  we are describing tachyon fields. We also obtain the current 
density vector? 

% X g -  %~B~ ~ (4.5) 

the stress-energy tensor 

T,~ = �89 ~ p  X,..  _ * A._ ,~ *,  a ,B - Xa,~ %,  XB + ~0 % 3 B  ~0~ - -  ~.~ %aB ~ ) - -  Z ,~g~  

(4.6) 
and the angular momentum density tensor 

1 "l * AB M~,,,p = x .  T~, o - x o T.~ + -~t (Xa % ~vpB CXc 
Xr c~*  C_AB. - ~ , a  o~ XB - ~ a % a B S ~ , ~ 0 * c  (4.7) 

+ ~c 5P,pc %.a~ ~ ~ 
where 

S ~ p c =  lr~. _oc oc ~c 2~\~ "Jp -- (TpOB ~v ) = �89 ~p -- gyp 6B C) (4.8) 

The charge density is now the difference of  two positive terms, but  we cannot  
associate each spinor field with a particle o f  definite charge, since the 
equations of  mot ion for the free fields show that  it is not  possible to have 
one of  them vanish without  the other being zero too. 

We can now introduce electromagnetic interactions by the usual gauge 
invariant substitution 

O~ --~ D r = Or, - ieA~, (4.9) 
to obtainl" 

=�89 D g X B  - (D~, X ] ) %  Xn + ~'4a#aB (4.10) 
-- (D~ ~0 a) cr~a a ~p.B] + m(~a XJ + ~p*a Xa) = Se + e A , A  

The sign of the second term in j ,  is unchanged, of course, if we denote that spinor 
field by ~o *a instead of ~0 a. In that case the gauge transformation that leaves ~'  invariant 
is Xa-+ xaexp(ia), ~A_+ ~0aexp(_ia). The same argument determines whether we 
should use D~ or D,* for a particular term in Le to introduce the electromagnetic 
interactions. 
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The equations of  motion become 

ia~D~x~ + mq~ A = 0 (4.11) 

_i%aB Dr ~a + mx ~ = 0 (4.12) 

and we note that the current density (4.5) is still conserved. 
The general solution of the free-field equations can be written in a form 

similar to that in equation (2.6), 

xa(x) = (2~) -3/2 f d3k (2ko) -1/2 ~ {(Ikl + ako) 1'2 b.(k) XA"(~) exp (-ik. x) 

+ (Ikl - ~k0) 1/2 d~*(k) Xaa(-~) exp (ik. x)} (4.13) 

where ko is given by equation (3.4), and we can take the square root with 
a positive real part for klo/z and (Ikl • Ak0) I/2. We find the corresponding 
expansion for ~o a from equation (4.3), 

~a(x) = (2~) -3/z f d3k (2ko) -1/z ~ {(Ikl - Ako) ~/' ba(k) X-a*a(s • 

• exp (- ik .  x) + (Ikt + ;~ko) ~/~ d~*(k) X-a*a(-lc) exp (ik. x)} 
(4.14) 

and we calculate the charge, with special care to allow for imaginary values 
of ko; we obtain 

a = f dZk ~ {Alba(k)l 2 - A[da(k)l z} 
R 

/ I  

(4.15) + f d3k ~ {ihba*(k)da*(-k) - ihba(k) aa(-k)} 

where the region R (R') is defined by [k] > m ([k] < m). @e note that the 
charge associated with the different amplitudes depends not only on the 
sign of the (real) frequency, but also on the helieity, while the contribution 
from imaginary frequencies does not have the usual form, but appears as 
interference terms. In the latter case, we can select linear combinations of 
the amplitudes, such as 

ba(k) = 2-1/2[fla(k) - i3a(k)] 
(4.16) 

da(-k) = 2-1/z[ifla*(k) + 8a*(k)] 

so that (with no sum over A) 

iba*(k)da*(-k) - iba(k)d,~(-k) = [fla(k)[ z - [3a(k)l 2 (4.17) 

A similar calculation leads to the energy, 

Po = f  d3kko ~ {Alba(k)[ z + Alda(k)] z} (4.18) 
R 

+ f d3k iko E {-Aba*(k) da*(-k) - hba(k) da(-k)} 
R ~ 

2O 
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which is obviously not positive definite, and the momentum 

P = f d3kk ~ {;~lba(k)[ 2 + Alda(k)[ 2} 
R a (4 .19 )  

f dak k Z {iAbff(k)da*(-k) - iAb~(k)da(-k)} + 
R' A 

Equations (4.15), (4.18) and (4.19) (there also is a similar expression for 
the angular momentum tensor) provide the basis for the interpretation of 
the ba and da as probability amplitudes in a relativistic quantum mechanics. 
They become creation or annihilation operators for the quantized field. 

5. Concluding Remarks 

We have presented the classical theory of a free spin-�89 tachyon field, 
which can also interact with the electromagnetic field in the usual manner. 
The charge (electric or other) is no longer positive definite, as is the case 
in equations (2.8a) and (2.8b), and this could allow for the probabilistic 
interpretation (Marx, 1969) of quantum mechanics. 

Since k~ is not really the energy-momentum vector of a particle, but just 
arises from the Fourier decomposition of a field, we have kept all values 
of k, while noticing the marked differences in the nature of the contributions 
to the field and conserved quantities from components with [k I > m and 
Ikl < m .  

The Lagrangian density is a Lorentz scalar and leads to covariant 
equations of motion. Our solution of the free-field equations is not ex- 
pressed in a co%riant form, since we have used x and k as continuous 
indices, while t is the dynamical parameter and k0 is a function of k. This 
is a reflection of our choice of the ko variable to do the first integration 
for the Green function; the initial and final values have to be given on 
hyperplanes of constant t. In the case of imaginary-frequency components, 
the exponential behavior in time implies that the field diverges on any 
hyperplane normal to a timelike unit four-vector n not along the time axis, 
since it contains points for which t = ~=oo. It is also possible to choose this 
vector n to represent the state of motion of the observer (Marx, 1970), 
which makes the expansion covariant but dependent on the observer; the 
exponential behavior then appears in the direction of n. 

The real-frequency components behave more or less in the expected way, 
but an interpretation in terms of quantum mechanics still has to take into 
account the changes of sign of k0 under orthochronous Lorentz transforma- 
tions, and the dependence of the charge and energy-momentum on the 
helicity. 

While it is clear that components with real and imaginary frequencies 
do not mix for a free field, we do not expect this to remain so when electrQ~ 
magnetic or other interactions are included. 
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No tachyons have been found to date; if they exist, it appears that their 
inclusion in the present framework of physics would be difficult, but not 
impossible. 
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